71 research outputs found

    Impaired hemodynamics and neural activation? A fMRI study of major cerebral artery stenosis

    Get PDF
    Functional MRI motor mapping was performed in two women with unilateral high-grade stenosis of the middle cerebral artery (MCA) to determine the influence of impaired hemodynamics on the blood oxygenation level dependent (BOLD) response. In both patients no structural lesions were present in primary motor pathways. A redistribution of the motor network to the healthy hemisphere was the main indicator of chronic hemodynamic compromise

    Do quiescent arachnoid cysts alter CNS functional organization? An fMRI and morphometric study

    Get PDF
    OBJECTIVE: To investigate whether congenital and clinically quiescent arachnoid cysts (AC) in the left temporal fossa alter the functional organization of adjacent cortices. METHODS: fMRI mapping was applied in five right-handed asymptomatic patients to determine the functional organization of language. Moreover, morphometry was performed in each patient to gain the size of cortical surface areas and cortical thickness values in the neighboring brain adjacent to the AC and explicitly in the left opercular region. RESULTS: Four patients showed a clear left hemisphere language dominance regardless of the cyst size; a mixed laterality of language organization was found in the remaining patient. An interesting dissociation of morphometric data was assessed when comparing strongly language-related cortices in the inferior frontal gyrus with the entire neighboring cortices. Morphometry in the neighboring brain regions of the AC showed 1) overall reduced cortical surface areas and 2) a decrease in cortical thickness compared to the homologous right side. However, the surface area of the fronto-opercular region in the left inferior frontal gyrus-i.e., the pars triangularis and the pars opercularis-was larger on the left as compared to the right side. Both structures have earlier been identified to represent the morphologic substrate of language dominance in the left hemisphere. CONCLUSION: Arachnoid cysts do not disturb the normal asymmetry of hemisphere language organization despite delicate locations adjacent to the left inferior frontal gyrus

    Characterization of cerebral microangiopathy using 3 Tesla MRI: Correlation with neurological impairment and vascular risk factors

    No full text
    To investigate whether clinical and neuropsychological impairment in cerebral small-vessel disease (CSVD) can be evaluated by means of morphological magnetic resonance imaging (MRI). Materials and Methods MRI at 3 Tesla in T2- and T1-weighted sequences was evaluated in 44 patients with cerebral microangiopathy, and 30 patients with combined cerebral micro- and macroangiopathy. The MR characteristics were correlated to clinical data, attentional impairment, and the patients' individual vascular risk factor profiles. Fifteen healthy age-matched control subjects participated in the study to assess MR signal changes in nonhypertensive elderly subjects. Results Patients and normal controls differed significantly in the extent of MR signal changes. A close relation between age, obesity, hypertension, and MR signal abnormalities was evident in all patients. Patients with pure CSVD additionally showed an association between their MR-defined severity of disease and their degree of neurological impairment, and their vascular risk score. In contrast, attentional impairment did not relate to the MR-defined severity of CSVD. Conclusion MR signal changes in CSVD show a close relationship to some risk factors of individual patients. J. Magn. Reson

    Determination of cerebrovascular reactivity by means of fMRI signal changes in cerebral microangiopathy: A correlation with morphological abnormalities

    No full text
    BACKGROUND AND PURPOSE: A reduced cerebrovascular reactivity (CR) is a risk factor of cerebrovascular disease. In this study, we implemented a protocol to assess CR by means of functional MRI (fMRI) using hyperventilation. SUBJECTS AND METHODS: In 5 patients with cerebral microangiopathy (CM/lacunar infarction and white matter degeneration), 6 healthy elderly subjects (age-matched control), and 6 young healthy subjects, the CR in response to hyperventilation was evaluated by fMRI using gradient echo-planar Imaging. The percentage signal change normalized by end-tidal CO(2) value was measured in various brain regions. RESULTS: All subjects performed hyperventilation well without adverse reaction and significant gross motion. Patients with CM showed significant qualitative and quantitative differences (p < 0.05) as compared to controls. The volume of gray matter showing significant CR was significantly reduced in patients: by 40% in comparison to the age-matched elderly control group and by 60% when compared with the young controls. The CR impairment was most pronounced in the frontal cortices with a drastically reduced magnitude of the magnetic resonance (MR) signal change in the patients (-0.62 +/- 0.2% in patients versus -2.0 +/- 0.36% in age-matched controls, p < 0.0001). A strong relation was evident between the fMRI-based CR reduction in patients with CM and the individual severity of structural MR abnormalities (p = 0.002). CONCLUSION: This study demonstrates that fMRI-based signal changes in response to hyperventilation reliably reflect cerebral vasoreactivity. The protocol is feasible in healthy young and elderly controls and patients with CM. Quantitative and qualitative assessment of the signal decrease in the T(2)-weighted MR sequence and coregistration with individual anatomical data allow the generation of an individual cerebral vasoreactivity map. Future research will address the effect of CR reduction on neuropsychological parameters in patients with CM

    Respiratory function and respiratory complications in spinal cord injury: protocol for a prospective, multicentre cohort study in high-income countries

    Get PDF
    Introduction Pneumonia is one of the leading complications and causes of death after a spinal cord injury (SCI). After a cervical or thoracic lesion, impairment of the respiratory muscles decreases respiratory function, which increases the risk of respiratory complications. Pneumonia substantially reduces patient’s quality of life, may prolong inpatient rehabilitation time, increase healthcare costs or at worse, lead to early death. Respiratory function and coughing can be improved through various interventions after SCI, but the available evidence as to which as

    Respiratory function and respiratory complications in spinal cord injury: protocol for a prospective, multicentre cohort study in high-income countries

    Get PDF
    Introduction Pneumonia is one of the leading complications and causes of death after a spinal cord injury (SCI). After a cervical or thoracic lesion, impairment of the respiratory muscles decreases respiratory function, which increases the risk of respiratory complications. Pneumonia substantially reduces patient’s quality of life, may prolong inpatient rehabilitation time, increase healthcare costs or at worse, lead to early death. Respiratory function and coughing can be improved through various interventions after SCI, but the available evidence as to which as

    The longitudinal changes of BOLD response and cerebral hemodynamics from acute to subacute stroke. A fMRI and TCD study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>By mapping the dynamics of brain reorganization, functional magnetic resonance imaging MRI (fMRI) has allowed for significant progress in understanding cerebral plasticity phenomena after a stroke. However, cerebro-vascular diseases can affect blood oxygen level dependent (BOLD) signal. Cerebral autoregulation is a primary function of cerebral hemodynamics, which allows to maintain a relatively constant blood flow despite changes in arterial blood pressure and perfusion pressure. Cerebral autoregulation is reported to become less effective in the early phases post-stroke.</p> <p>This study investigated whether any impairment of cerebral hemodynamics that occurs during the acute and the subacute phases of ischemic stroke is related to changes in BOLD response.</p> <p>We enrolled six aphasic patients affected by acute stroke. All patients underwent a Transcranial Doppler to assess cerebral autoregulation (Mx index) and fMRI to evaluate the amplitude and the peak latency (time to peak-TTP) of BOLD response in the acute (i.e., within four days of stroke occurrence) and the subacute (i.e., between five and twelve days after stroke onset) stroke phases.</p> <p>Results</p> <p>As patients advanced from the acute to subacute stroke phase, the affected hemisphere presented a BOLD TTP increase (p = 0.04) and a deterioration of cerebral autoregulation (Mx index increase, p = 0.046). A similar but not significant trend was observed also in the unaffected hemisphere. When the two hemispheres were grouped together, BOLD TTP delay was significantly related to worsening cerebral autoregulation (Mx index increase) (Spearman's rho = 0.734; p = 0.01).</p> <p>Conclusions</p> <p>The hemodynamic response function subtending BOLD signal may present a delay in peak latency that arises as patients advance from the acute to the subacute stroke phase. This delay is related to the deterioration of cerebral hemodynamics. These findings suggest that remodeling the fMRI hemodynamic response function in the different phases of stroke may optimize the detection of BOLD signal changes.</p

    Changes in Striatal Dopamine Release Associated with Human Motor-Skill Acquisition

    Get PDF
    The acquisition of new motor skills is essential throughout daily life and involves the processes of learning new motor sequence and encoding elementary aspects of new movement. Although previous animal studies have suggested a functional importance for striatal dopamine release in the learning of new motor sequence, its role in encoding elementary aspects of new movement has not yet been investigated. To elucidate this, we investigated changes in striatal dopamine levels during initial skill-training (Day 1) compared with acquired conditions (Day 2) using 11C-raclopride positron-emission tomography. Ten volunteers learned to perform brisk contractions using their non-dominant left thumbs with the aid of visual feedback. On Day 1, the mean acceleration of each session was improved through repeated training sessions until performance neared asymptotic levels, while improved motor performance was retained from the beginning on Day 2. The 11C-raclopride binding potential (BP) in the right putamen was reduced during initial skill-training compared with under acquired conditions. Moreover, voxel-wise analysis revealed that 11C-raclopride BP was particularly reduced in the right antero-dorsal to the lateral part of the putamen. Based on findings from previous fMRI studies that show a gradual shift of activation within the striatum during the initial processing of motor learning, striatal dopamine may play a role in the dynamic cortico-striatal activation during encoding of new motor memory in skill acquisition
    • …
    corecore